In vivo noninvasive identification of cell composition of intimal lesions: A combined approach with ultrasonography and immunocytochemistry

M. Puato, MD, E. Faggin, PhD, M. Rattazzi, MD, M. Paterni, MS, M. Kozáková, MD, C. Palombo, MD, and P. Pauletto, MD, on behalf of the Study Group on Arterial Wall Structure, Padua and Pisa, Italy

L-Arginine improves endothelial vasoreactivity and reduces thrombogenicity after thrombolysis in experimental deep venous thrombosis

Peter H. Lin, MD, Chris K. Johnson, MD, Jennifer K. Pullium, DVM, Ruth L. Bush, MD, Brian S. Conklin, PhD, Changyi Chen, MD, PhD, and Alan B. Lumsden, MD, Houston, Tex; and Atlanta, Ga

CASE REPORTS

Use of fascia-peritoneum patch as a pledget for an infected aortic stump

Timur P. Sarac, MD, Peter Augustinos, MD, Sean Lyden, MD, and Kenneth Ouriel, MD, Cleveland, Ohio

Endovascular repair of a penetrating thoracic aortic ulcer by way of the carotid artery

Michael J. Heidenreich, MD, David G. Neschis, MD, Michael J. Costanza, MD, and William R. Flinn, MD, Baltimore, Md

Treatment of portal venous thrombosis with selective superior mesenteric artery infusion of recombinant tissue plasminogen activator

E. A. Henao, MD, W. Todd Bohannon, MD, and M. B. Silva, Jr, MD, Lubbock, Tex

Caval and ureteral obstruction secondary to an inflammatory abdominal aortic aneurysm

Vikram S. Kashyap, MD, Raymond Fang, MD, Colleen M. Fitzpatrick, MD, and Ryan T. Hagino, MD, San Antonio, Tex

Combined open and endovascular repair of a syphilitic aortic aneurysm

Bethany Goldstein, MD, Alfio Carroccio, MD, Sharif H. Ellozy, MD, David Spielvogel, MD, Nicholas Morrissy, MD, Victoria Teodorescu, MD, Larry H. Hollier, MD, and Michael L. Marin, MD, New York, NY

Endovascular abdominal aortic aneurysm repair to prevent rupture in a patient requiring lithotripsy

Rick de Graaf, MSc, Frank J. Veith, MD, Nicholas J. Gargiulo III, MD, Evan C. Lipsitz, MD, Takao Ohki, MD, PhD, and Harrie A. J. M. Kurvers, MD, New York, NY

Primary malignant tumors of the aorta: Clinical presentation, treatment, and course of different entities

Hinrich Böchner, MD, Bernd Luther, MD, Stefan Braunstein, MD, Sandra Beer, MD, and Wilhelm Sandmann, MD, Düsseldorf, Germany

Inferior mesenteric artery aneurysm in Behçet syndrome

Naoto Morimoto, MD, Yutaka Okita, MD, Yoshihiko Tsuji, MD, Nobutaka Inoue, MD, and Mitsuhiro Yokoyama, MD, Kobe, Japan
CONTENTS CONTINUED

Inferior vena cava endograft to control surgically inaccessible hemorrhage 1437
Victor Z. Erzurum, MD, Margo Shoup, MD, Marc Borge, MD, Peter G. Kalman, MD, Heron Rodriguez, MD, and Geoffrey M. Silver, MD, Maywood, Ill

VASCULAR IMAGES

Multiple arterial aneurysms 1440
Hisato Takagi, MD, PhD, Yoshio Mori, MD, PhD, Hideaki Manabe, MD, and Hajime Hirose, MD, PhD, Gifū, Japan

ACKNOWLEDGMENT OF REVIEWERS 1441

SURGICAL ETHICS CHALLENGES

Limits of confidentiality: Disclosure of HIV seropositivity 1443
James W. Jones, MD, PhD, MHA, Laurence B. McCullough, PhD, and Bruce W. Richman, MA, Houston, Tex, and Columbia, Mo

LETTERS TO THE EDITOR

Regarding “Postoperative infection associated with polyester patch angioplasty after carotid endarterectomy” 1445
John B. Chang, MD, and Theodore A. Stein, PhD, Roslyn, NY

Reply 1445
Caron Rockman, MD, and Thomas Riles, MD, New York, NY

Regarding response to “Vein transposition in the forearm for autogenous hemodialysis access” and “Basilic vein transposition: An underused autologous alternative to prosthetic dialysis angioaccess” 1446
Eric Chemla, BSc, MD, FRCS, René S.W. Chang, BSc, MD, FRCS, and Francis Calder, BSc, FRCS, London, United Kingdom

Regarding “Cryopreserved saphenous vein allografts in infrainguinal revascularization: Analysis of 240 grafts” 1446
Herbert Dardik, MD, Englewood, New Jersey

Regarding “External iliac artery endofibrosis: A new possible predisposing factor” 1446
Francois Mosimann, MD, Fleurimont, Québec, Canada

Reply 1446
Vincent Scaveé, MD, and J.C. Schoevaerdts, MD, Yvoir, Belgium

BOOK REVIEWS

Endovascular intervention: New tools and techniques for the 21st century (Patrick J. O’Hara, MD); Vascular surgery cases, questions and commentaries (James O. Menzoian, MD); Cerebrovascular ultrasound: Theory, practice, and future developments (Dennis Baker, MD)

14A JOURNAL OF VASCULAR SURGERY /December 2003
No benign immunocytochemistry results were associated with a malignant lesion. In all, 22.5% of the 39 removed nodules were malignant. Conclusion. The FLUS category is supported by well-described criteria. The risk of malignancy in our series was 22.5%. The last several years have seen the publication of international classifications for thyroid lesions based on FNA results, more or less linked with ultrasonography data. In 2006, the American Thyroid Association and the Italian Society of Pathology and Cytology [8] published a 4-tiered classification: nondiagnostic, benign, malignant, and suspicious or indeterminate. The 2009 American Thyroid Association classification [9] was nondiagnostic, malignant, indeterminate or suspicious for neoplasm, and benign. Ultrasound contrast agent microbubbles are visualized few seconds after the injection as a hyperechoic dynamic flow in the carotid vessel lumen, providing an enhanced visualization of the carotid intima-media complex and a better identification of the plaque surface. They may be of help in better defining plaque surface and to indentify plaque ulceration, especially when B-Mode imaging and Color imaging are blurry or have a low definition. Application of existing techniques and development of novel approaches to in vivo imaging of particular cell groups for the tasks of cell regenerative medicine is one of the perspective directions in modern biomedical studies. In vivo bioimaging is traditionally employed to study migration direction, proliferation and differentiation of stem cells in experiment and in clinical environment. Currently, numerous techniques for in vivo imaging of cells and cell structures with wide choice of sensitivity, specificity, and resolution characteristics are developed allowing to select an optimal tool for the tasks. Duplex ultrasound with GSM analysis and HR-MRI at the carotid level were performed at baseline and 1- and 2-year follow up in 30 patients with < 70% carotid stenosis. Changes in GSM values (ΔGSM) were evaluated as the intra-individual difference between 2-year and baseline values. HR-MRI studies were evaluated for lumen area (LA), total vessel area (TVA), vessel wall area (VWA = TVA-LA) and normalized wall index (NWI = VWA/TVA). RESULTS. By corroborating that plaque vulnerability is highly independent of stenosis severity, our study provided a possible new combined “in vivo” noninvasive approach for the assessment of carotid plaque vulnerability. KEYWORDS: Carotid artery; atherosclerosis; magnetic resonance imaging; ultrasound imaging; vascular imaging. In vivo noninvasive identification of cell composition of intimal lesions: a combined approach with ultrasonography and immunocytochemistry. Embed. Cellular Behaviour Of Plants In Vivo And In V