Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking

Harry L. Van Trees and Kristine L. Bell, editors

Publisher: John Wiley
Publication Date: 2007
Number of Pages: 951
Format: Hardcover
Price: $111.00
ISBN: 978-0-470-12095-8
Category: Anthology

We do not plan to review this book.

Preface.

Introduction (Harry L. Van Trees and Kristine L. Bell).

1 Bayesian Estimation: Static Parameters.

1.1 Maximum Likelihood and Maximum a Posteriori Estimation.

1.1.1 Nonrandom Parameters.

1.1.2 Random Parameters.

1.1.3 Hybrid Parameters.

1.1.4 Examples.

1.2 Covariance Inequality Bounds.

1.2.1 Covariance Inequality.

1.2.2 Bayesian Bounds.

1.2.3 Scalar Parameters.

1.2.3.1 Bayesian Cramér-Rao Bound.

1.2.3.2 Weighted Bayesian Cramér-Rao Bound.

1.2.3.3 Bayesian Bhattacharyya Bound.

1.2.3.4 Bobrovsky-Zakai Bound.

1.2.3.5 Weiss-Weinstein Bound.

1.2.4 Vector Parameters.

1.2.4.1 Bayesian Cramér-Rao Bound.

1.2.4.2 Weighted Bayesian CRB.

1.2.4.3 Bayesian Bhattacharyya Bound.

1.2.4.4 Bobrovsky-Zakai Bound.

1.2.4.5 Weiss-Weinstein Bound.
1.2.5 Combined Bayesian Bounds.

1.2.6 Nuisance Parameters.

1.2.6.1 Nonrandom Unwanted Parameters.

1.2.6.2 Random Parameters.

1.2.7 Hybrid Parameters.

1.2.8 Functions of the Parameter Vector.

1.2.8.1 Scalar Parameters.

1.2.8.2 Vector Parameters.

1.2.9 Summary: Covariance Inequality Bounds.

1.3 Ziv–Zakai Bounds.

1.3.1 Scalar Parameters.

1.3.2 Equally Likely Hypotheses.

1.3.3 Vector Parameters.

1.4 Method of Interval Estimation.

1.5 Summary.

2 Bayesian Estimation: Random Processes.

2.1 Continuous-Time Processes and Continuous-Time Observations.

2.1.1 Nonlinear Models.

2.1.1.1 Linear AWGN Process and Observations.

2.1.1.2 Linear AWGN Process, Nonlinear AWGN Observations.

2.1.1.3 Nonlinear AWGN Process and Observations.

2.1.1.4 Nonlinear Process and Observations.

2.1.2 Bayesian Cramér-Rao Bounds: Continuous-Time.

2.2 Continuous-Time Processes and Discrete-Time Observations.

2.2.1 Extended Kalman Filter.

2.2.2 Bayesian Cramér-Rao Bound.

2.2.3 Discretizing the Continuous-Time State Equation.

2.3 Discrete-Time Processes and Discrete-Time Observations.

2.3.1 Linear AWGN Process and Observations.

2.3.2 General Nonlinear Model.

2.3.2.1 MMSE and MAP Estimation.

2.3.2.2 Extended Kalman Filter.

2.3.3 Recursive Bayesian Cramér–Rao Bounds.

2.4 Global Recursive Bayesian Bounds.

2.5 Summary.

3 Outline of the Book.

Part I Bayesian Cramér–Rao Bounds.

Part II Global Bayesian Bounds.

Part III Hybrid Bayesian Bounds.

Part IV Constrained Cramér–Rao Bounds.

Part V Applications: Static Parameters.

Part VI Nonlinear Stochastic Dynamic Systems.

Part VII Applications: Nonlinear Dynamic Systems.

Part VIII Statistical Literature.

References.

Author Index.

Tags: Statistics Parameter Estimation Bayesian Statistics

Log in to post comments
An accessible introduction to Bayes’ theorem and how it’s used in statistical inference to estimate parameter values for statistical and machine learning models. In this post, we’ll go over another method for parameter estimation using Bayesian inference. I’ll also show how this method can be viewed as a generalisation of maximum likelihood and in what case the two methods are equivalent. Some fundamental knowledge of probability theory is assumed e.g. marginal and conditional probability. Home » MAA Publications » MAA Reviews » Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking. Harry L. Van Trees and Kristine L. Bell, editors. Publisher. 2.4 R. J. McAulay and E. M. Hostetter, “Barankin bounds on parameter estimation,” IEEE Trans. Info. Theory, vol. Nonlinear filtering is the process of estimating and tracking the state of a nonlinear stochastic system from non-Gaussian noisy observation data. In this technical memorandum, we present an overview of techniques for nonlinear filtering for a wide variety of conditions on the nonlinearities and on the noise. We begin with the development of a general Bayesian approach to filtering which is applicable to all linear or nonlinear stochastic systems, 2. General Bayesian Filter. A nonlinear stochastic system can be denoted by a stochastic discrete-time state space transition (dynamical) equation, $x_n = f_{n-1}(x_{n-1}, w_{n-1})$, and the stochastic observation (measurement) process.