In vivo noninvasive identification of cell composition of intimal lesions: A combined approach with ultrasonography and immunocytochemistry

M. Puato, MD, E. Faggin, PhD, M. Rattazzi, MD, M. Paterni, MS, M. Kozáková, MD, C. Palombo, MD, and P. Pauletto, MD, on behalf of the Study Group on Arterial Wall Structure, Padua and Pisa, Italy

L-Arginine improves endothelial vasoreactivity and reduces thrombogenicity after thrombolysis in experimental deep venous thrombosis

Peter H. Lin, MD, Chris K. Johnson, MD, Jennifer K. Pullium, DVM, Ruth L. Bush, MD, Brian S. Conklin, PhD, Changyi Chen, MD, PhD, and Alan B. Lumsden, MD, Houston, Tex; and Atlanta, Ga

CASE REPORTS

Use of fascia-peritoneum patch as a pledget for an infected aortic stump

Timur P. Sarac, MD, Peter Augustinos, MD, Sean Lyden, MD, and Kenneth Ouriel, MD, Cleveland, Ohio

Endovascular repair of a penetrating thoracic aortic ulcer by way of the carotid artery

Michael J. Heidenreich, MD, David G. Neschis, MD, Michael J. Costanza, MD, and William R. Flinn, MD, Baltimore, Md

Treatment of portal venous thrombosis with selective superior mesenteric artery infusion of recombinant tissue plasminogen activator

E. A. Henao, MD, W. Todd Bohannon, MD, and M. B. Silva, Jr, MD, Lubbock, Tex

Caval and ureteral obstruction secondary to an inflammatory abdominal aortic aneurysm

Vikram S. Kashyap, MD, Raymond Fang, MD, Colleen M. Fitzpatrick, MD, and Ryan T. Hagino, MD, San Antonio, Tex

Combined open and endovascular repair of a syphilitic aortic aneurysm

Bethany Goldstein, MD, Alfio Carroccio, MD, Sharif H. Ellozy, MD, David Spielvogel, MD, Nicholas Morrisey, MD, Victoria Teodorescu, MD, Larry H. Hollier, MD, and Michael L. Marin, MD, New York, NY

Endovascular abdominal aortic aneurysm repair to prevent rupture in a patient requiring lithotripsy

Rick de Graaf, MSc, Frank J. Veith, MD, Nicholas J. Gargiulo III, MD, Evan C. Lipsitz, MD, Takao Ohki, MD, PhD, and Harrie A. J. M. Kurvers, MD, New York, NY

Primary malignant tumors of the aorta: Clinical presentation, treatment, and course of different entities

Hinrich Böchner, MD, Bernd Luther, MD, Stefan Braunstein, MD, Sandra Beer, MD, and Wilhelm Sandmann, MD, Düsseldorf, Germany

Inferior mesenteric artery aneurysm in Behçet syndrome

Naoto Morimoto, MD, Yutaka Okita, MD, Yoshihiko Tsuji, MD, Nobutaka Inoue, MD, and Mitsuhiro Yokoyama, MD, Kobe, Japan
CONTENTS CONTINUED

Inferior vena cava endograft to control surgically inaccessible hemorrhage 1437
Victor Z. Erzurum, MD, Margo Shoup, MD, Marc Borge, MD, Peter G. Kalman, MD, Heron Rodriguez, MD, and Geoffrey M. Silver, MD, Maywood, Ill

VASCULAR IMAGES

Multiple arterial aneurysms 1440
Hisato Takagi, MD, PhD, Yoshio Mori, MD, PhD, Hideaki Manabe, MD, and Hajime Hirose, MD, PhD, Gifu, Japan

ACKNOWLEDGMENT OF REVIEWERS 1441

SURGICAL ETHICS CHALLENGES

Limits of confidentiality: Disclosure of HIV seropositivity 1443
James W. Jones, MD, PhD, MHA, Laurence B. McCullough, PhD, and Bruce W. Richman, MA, Houston, Tex; and Columbia, Mo

LETTERS TO THE EDITOR

Regarding “Postoperative infection associated with polyester patch angioplasty after carotid endarterectomy” 1445
John B. Chang, MD, and Theodore A. Stein, PhD, Roslyn, NY

Reply 1445
Caron Rockman, MD, and Thomas Riles, MD, New York, NY

Regarding response to “Vein transposition in the forearm for autogenous hemodialysis access” and “Basilic vein transposition: An underused autologous alternative to prosthetic dialysis angioaccess” 1446
Eric Chemla, BSc, MD, FRCS, René S.W. Chang, BSc, MD, FRCS, and Francis Calder, BSc, FRCS, London, United Kingdom

Regarding “Cryopreserved saphenous vein allografts in infrainguinal revascularization: Analysis of 240 grafts” 1446
Herbert Dardik, MD, Englewood, New Jersey

Regarding “External iliac artery endofibrosis: A new possible predisposing factor” 1446
Francois Mosimann, MD, Fleurimont, Québec, Canada

Reply 1446
Vincent Scaveée, MD, and J.C. Schoevaerds, MD, Yvoir, Belgium

BOOK REVIEWS

Endovascular intervention: New tools and techniques for the 21st century (Patrick J. O’Hara, MD); Vascular surgery cases, questions and commentaries (James O. Menzoian, MD); Cerebrovascular ultrasound: Theory, practice, and future developments (Dennis Baker, MD) 1448

14A JOURNAL OF VASCULAR SURGERY/December 2003
In vivo noninvasive identification of cell composition of intimal lesions: A combined approach with ultrasonography and immunocytochemistry. Article. Jan 2004. Vascular smooth muscle cells (SMCs) play a key role in the development of atherosclerotic lesions. Vascular smooth muscle, however, does not represent a homogeneous tissue. Using myosin as a marker of the differentiation processes in development and in vascular disease, we have been able to demonstrate the existence of distinct SMC populations in vivo. Bioluminescent imaging (BLI) is increasingly being utilized as a method for modern biological research. This process, which involves the noninvasive interrogation of living animals using light emitted from luciferase-expressing bioreporter cells, has been applied to study a wide range of biomolecular functions such as gene function, drug discovery and development, cellular trafficking, protein-protein interactions, and especially tumorigenesis, cancer treatment, and disease progression. All Special Issues 10 Years Sensors - A Decade of Publishing Acoustic Wave Resonator-Based Sensors Acoustic Waveguide Sensors Adaptive Sensing Advanced Sensors in Agriculture Advances in Artificial Intelligence: Selected Papers from MICAI 2013, 2014 Immunocytochemistry (ICC) is a common laboratory technique that is used to anatomically visualize the localization of a specific protein or antigen in cells by use of a specific primary antibody that binds to it. The primary antibody allows visualization of the protein under a fluorescence microscope when it is bound by a secondary antibody that has a conjugated fluorophore. ICC allows researchers to evaluate whether or not cells in a particular sample express the antigen in question. In cases where we developed a method enabling the noninvasive study of fine cellular responses that we applied to macrophage activation. The technique is based on a multimodal label-free microscopy system that simultaneously retrieves both morphological and molecular information based on quantitative phase imaging and Raman spectroscopy, respectively. Morphology is symptomatic of downstream phenotypes that make the detection dose-dependent, while Raman is indicative of upstream molecular changes that enable the detection of selective inhibition of activation pathways. Abstract. We present a method enabling the noninvasive study of minute cellular changes in response to stimuli, based on the acquisition of multiple parameters through label-free microscopy. In this study we approached this issue in vivo, studying thymocyte migration in GH transgenic animals and in normal mice treated intrathymically with GH. Extracellular matrix and chemokines are involved in thymocyte migration. Growth hormone modulates thymocyte development in vivo through a combined action of laminin and CXC chemokine ligand 12.

@article{Smaniotto2005GrowthHM, title={Growth hormone modulates thymocyte development in vivo through a combined action of laminin and CXC chemokine ligand 12.}, author={S. Smaniotto and V. de Mello-Coelho and D. M. Villa-Verde and J. Pleau and M. Postel-Vinay and M. Dardenne and W. Savino}, journal={Endocrinology}, year={2005}