RADAR HANDBOOK

In general, the subjects are covered in breadth rather than depth. Mathematical derivations and detailed exposition normally characteristic of texts are omitted. Many of the topics discussed could themselves easily have been expanded into books. References are provided with each chapter for those readers desiring additional information. The first chapter serves as a brief introduction to radar. Chapters 2 to 4 describe methods for predicting the range performance of radar, the theoretical aspects of waveform design as based on the Woodward ambiguity function, and the theoretical precision with which radar measurements can be made. Chapters 5 to 14 describe the various parts of a radar system, which include the receivers, displays, transmitters, RF components, antennas, and radomes. Chapter 15, on automatic-detection theory, is concerned with some of the theoretical aspects of signal processing that enter into receiver design as well as waveform design. Radar techniques are described in Chaps. 16 to 23. These include CW and FM-CW radar, MTI, AMTI, pulse-doppler, pulse compression, tracking radar, height-finding radar, and synthetic aperture radar. Weather effects, land and sea clutter, target characteristics, and interference are discussed in Chaps. 24 to 29. Chapters 30 to 39 describe several special applications of radar and miscellaneous topics. These topics are included not only to describe these important applications but to provide a means for introducing some aspects of radar technology not found elsewhere in the handbook. Chapters on bistatic and multistatic radar and laser radar are also included. A chapter on digital signal processing is provided since this is a subject of increasing importance in the practical implementation of radar. Two chapters discuss subjects that are not strictly radar but are related and are often of interest to many radar engineers. One is on beacons, and the other describes the subject of passive detection, or microwave radiometry.

Corporate Authors: McGraw-Hill, Incorporated
330 West 42nd Street
New York, NY United States 10036

Authors: Skolnik, M I

Publication Date: 1970

Features: References;

Subject/Index Terms
TRT Terms: Doppler radar; Radar; Radar antennas; Radar beacons; Radar beacons; Radar clutter; Radar receivers; Radar tracking; Radio transmitters
Old TRIS Terms: Radar range; Radar scopes
Subject Areas: Marine Transportation; Operations and Traffic Management;

Filing Info
Accession Number: 00156259
Record Type: Publication
Source Agency: McGraw-Hill, Incorporated
Files: TRIS
Created Date: Jul 2 1977 12:00AM
This handbook is designed to aid electronic warfare and radar systems engineers in making general estimations regarding capabilities of systems. This handbook is sponsored by the NAVAIR Director of Electronic Warfare/Combat Systems Department. This fourth edition updates technical information in Sections 3-7 and 3-8 from previous editions. This document was reviewed for technical accuracy by Dr. Andrew Chen. RADAR HANDBOOK. Editor in Chief MERRILL I. SKOLNIK. Second Edition. Library of Congress Cataloging-in-Publication Data. Radar handbook / editor in chief, Merrill I. Skolnik. — 2nd ed. p. cm. Includes index. ISBN 0-07-057913-X. 1. Radar—Handbooks, manuals, etc. I. Skolnik, Merrill. I. (Merrill Ivan), date. Turn to the Third Edition of Radar Handbook for state-of-the-art coverage of the entire field of radar technology from fundamentals to the newest applications. With contributions by 30 world experts, this resource examines methods for predicting radar range and explores radar subsystems such as receivers, transmitters, antennas, data processing, ECCM, and pulse compression. Radar Handbook, Third Edition. The McGraw-Hill Companies, 2008. - 1351 p. PREFACE Radar is an important example of an electrical engineering system. In university engineering courses, the emphasis usually is on the basic tools of the electrical engineer such as circuit design, signals, solid state, digital processing, electronic devices, electromagnetics, automatic control, microwaves, and so forth. This book provides a single-source reference on the physical mechanisms and principles of operation of radio location devices, including theoretical aspects of designing the necessary, high-efficiency electronic devices and systems, as well as key, practical methods of computation and design. Bibliographic Information. Book Title. Handbook of Microwave and Radar Engineering. Authors. Anatoly Belous.